
Fermilab LDRD Proposal

Project Title: Preparing HEP reconstruction and analysis software for exascale-era computing

Principal Investigator: Marc Paterno

Lead Division/Sector/Section: SCD/CS/SSI

Co-Investigators (w/Institutions): n/a

Proposed FY and Total Budget: (summary of budget page in K dollars

SWF SWF OH M & S M&S OH Contingency Total

FY15

FY16 $132.9 $113.5 $51.6 $12.0 $0.0 $310.0

FY17 $136.9 $116.9 $51.6 $12.0 $0.0 $317.4

Total $269.8 $230.4 $103.2 $24.0 $0.0 $627.4

1 Project Description

All HEP experiments rely on event processing software systems to manage algorithms and data from
detectors and simulations. The current generation is designed to run well on commodity compute
clusters such as FermiGRID. The Office of Science is investing heavily in very large-scale computing
centers and has been pushing hard for all branches of science to make use of these systems in the
future. They are asking us to consider how software must change, assuming that CPU cycles are
free and file I/O is costly. The future will be dominated by cores with little high-speed memory and
with several tiers of slower memory, by ultra-high-speed networking, and by specialized resources for
file I/O. Our software systems are not ready for this shift. The purpose of this research project is to
produce a prototype software system for HEP event processing that demonstrates an architecture
and a design that will be capable of scaling to greater than 100K cores and efficiently moving event
data through these new high-performance computing platforms in forms necessary for algorithmic
work. Fermilab’s HEP framework developers do not have a record of research in this DOE advanced
computing community. Success in this project will give us the foundation we need to participate in
future DOE grant calls.

While porting exercises are underway for performing specialized subsets of HEP processing on
current systems, no overall re-architecting has been started to address the imminent larger structural
changes. We propose moving to a distributed memory, multi-process design to gain back memory
space across the application, and to eliminate all I/O to physical storage, except at specialized
aggregation points. We will leverage state-of-the-art R&D efforts focused on exascale computing,
such as Legion [1] , Charm++ [2] , or MPI for distributed programming technology, and HDF5 [3]
for parallel storage.

1

A successful demonstration will enable a path towards using the enormous compute power of
the DOE-funded exascale facilities. Access to these facilities will be predicated on their efficient
use and our current software system do not fit their constraints. The neutrino and muon programs
could directly benefit from these available cycles, seeing significant reductions in turn-around time
for large-scale processing tasks.

2 Significance

The P5 report notes a major computing challenge facing our field: “The present practice is to handle
much of the computing within individual projects. Rapidly evolving computer architectures and
increasing data volumes require effective crosscutting solutions that are being developed in other
science disciplines and in industry.”

The computing model for HEP experiments has been based around high-throughput computing
(HTC) rather than HPC, as the computing problem is naturally parallel. However, the need to
make efficient use of HPC resources drives the need to modify the computing model. In a discussion
of the LHC experiments in particular, Bloom and Gutsche note:

If we were to only take advantage of the expected growth in CPU power for fixed cost at
25% per year and in storage at 20% per year, we would expect deficits of a factor of four
or twelve in CPU and a factor of three in storage under the assumption of fixed budgets
for computing resources, even after accounting for potential algorithmic improvements.
Clearly changes to the current paradigm must be considered. [4]

Our current computing model is a barrier to efficient use of the kinds of machines which will
provide most of the available CPU cycles in the exascale era. If HEP experiments use just 5% of the
compute capability of the next generation of ASCR HPC machines, it is approximately 25 times
what grid resources will provide. [5]

The traditional HEP processing model for how data are moved between processing steps is from
disk storage, to memory, back to disk storage: files on disk are the transfer mechanism between
processes, and every computing node is expected to have significant I/O capability. This model is
not consistent with the design of leadership-scale machines now in use. Such machines typically
have dedicated, specialized I/O resources, rather than having I/O capability on each node. For
example, ANL’s Mira has 49,152 compute nodes but only 384 I/O nodes, and future machines will
have an even greater imbalance between compute capability and I/O capability. [6]

Upcoming machines will have enormous data transfer bandwidth between compute nodes and
I/O nodes (e.g. ANL’s Aurora has a planned interconnect aggregate bandwidth of more than
2.5 PB/s, compared to a filesystem throughput of 1 TB/s. [7] To make efficient use of such machines
requires that our frameworks support communication of the data through the interconnect networks.

The I/O systems on current and future machines use specialized parallel filesystems, such as
Lustre, as well as specialized I/O libraries that can take advantage of the parallel filesystem. One of
the premier software tools in this domain is HDF5, which is in use at many current HPC facilities.
The HDF Group is actively pursuing its continued development.

Efficient use of even current commodity clusters could benefit from a reorganization of our
software; the storage I/O capacity of affordable worker nodes is significantly less than that of
larger capacity disk servers (∼ 100 MB/s vs. ∼ 300 MB/s or more), while 10–40 Gb/s network
interconnects are affordable. Processing chains that require writing to disk between steps use a
significant fraction of their CPU resources performing I/O: a recent MicroBooNE performance
review showed that about 50% of the program’s time was spent in I/O. [8] Avoidance of unnecessary
file writing could benefit multi-step workflows.

2

Through multiple trajectories, we are trying (and are being pushed) to approach HPC resources.
Initiatives include (a) the Fermilab’s “HEP Cloud” project, designed to seamlessly integrate HPC
resources into existing job submission infrastructure, (b) an ANL leadership center, Computational
Physics-funded, project to port the Muon g-2 simulation to run on current and near-future HPC
resources, and (c) invitations to write proposals for developing an understanding of how to leverage
extreme-scale (low-memory, high-bandwidth, limited storage I/O capacity) machines for HEP use. [9]

Different parts of the HEP community are moving forward to address efficiency problems with
the traditional computing model in HEP. For example, CMS has re-organized their simulation and
reconstruction workflow so that the files on disks local to a given node are re-used, on that node,
for multiple steps of the workflow. This avoids superfluous copying of files, but it means that many
steps of the workflow have to be carried out on the same node, and it still requires the I/O work.
This limits how flexible job scheduling can be, and can lead to inefficiencies in grid resource usage.
MicroBooNE uses a more traditional model, in which different phases of the workflow are handled
as separate grid jobs; the requires moving data into and out of shared global/distributed storage
between jobs. This allows the grid job scheduling to be flexible, but much time is then used for
file I/O. The use of xrootd is a step toward making data transfer network-oriented, rather than
filesystem-oriented. However, it does not move away from the existing organization of data on disk,
and it does not at all address the writing of output.

While these projects all address, in some way, the HPC challenge, none of them fundamentally
alter the structure of our framework programs, to bring them into alignment with the demands of
exascale-era machines.

3 Research Plan

3.1 Overview

The primary objective of this project is to produce a prototype software system suitable for moving
HEP experiment event data through multiple processing stages in an exascale-class computing facility.
In particular, work will concentrate on demonstration of two critical components of a complete
event-processing system: (a) high-performance I/O to a parallel filesystem, and (b) communication
of event data through high-performance node interconnects (rather than through the filesystem),
between processes of one application running across hundreds or thousands of nodes—a distributed
program.

Thus the research plan is organized into three parts:
1. Production of a proof-of-concept I/O implementation for a selection of realistic HEP simulation

and experimental data.
2. Production of a proof-of-concept implementation for a distributed event data product store,

suitable for handling these same data on high-core-count, low-memory-per-core computing
hardware.

3. Studying the scaling performance of the resulting systems, iterating on the architecture and
design choices to optimize the system.

3.2 HDF5 R&D

Central to any event-processing program is the event data that is processed. In addition to algorithms
for use in simulation and reconstruction of LArTPC data, the LArSoft toolkit also defines a set of
data products used by them. The data products are defined as C++ classes; relevant for this work

3

fSignalTime
fSignalWidth
fPeakAmp
fCharge
fPartVertex
fPartEnergy
fPatrTrackId

MCHit

fChannel

MCHitCollection

*

1
«hits»

(a) Simulated hits in the LArTPC detectors are
represented by MCHit objects, each of which con-
tains a variety of data. A single detector channel
readout can be associated with many such hits.

fChannel
fSamples
fPedestal
fSigma
fCompression

RawDigit

vector<short>

*

1
«fADC»

RawDigitCollection

(b) A RawDigit represents a single channel read-
out from a LArTPC detector, and consists of
a collection of summary data, and the individ-
ual samples from the associated ADC. One event
contains a collection of (typically) many such
RawDigits.

Figure 1: Some of the basic event data classes in LArSoft.

are the data contained within those classes. Figures 1a and 1b show the data of some of the basic
classes in LArSoft.

The first part of the project involves determining how to best encode such data products for
storage in the HDF5 format, enabling the use of high-performance parallel filesystems, such as
Lustre. The HDF5 format supports hierarchical structures, which is critical for describing the
highly-structured HEP data. A challenging aspect of this task involves dealing with the irregular
nature of much of HEP data: not all events have the same number of hits, not all tracks have the
same number of hits, etc. HDF5 is traditionally used for storing hierarchical structures of regular
data.

Users of modern HEP frameworks are accustomed to automatic generation of the I/O functions
to support the classes they define. In the art framework, which underlies LArSoft, the primary I/O
system is ROOT. Authors of data classes rely upon ROOT’s facilities to take information from the
C++ header file, describing the class, as well as a selection file that specifies additional information
needed for ROOT’s tools to generate the necessary I/O routines. A fragment of one of LArSoft’s
selection files is shown in figure 2; only the part associated with the RawDigit class from figure 1b
is included.

In order for HDF5 to be a feasible addition to the family of I/O facilities, we will need a
mechanism by which the necessary HDF5 I/O code will be generated. While ROOT does this in
part by parsing the C++ header, a possibly more promising route is to devise a data definition
language (DDL) for HDF5. Using a DDL, one describes the data layout of the class, and both
the class header and the related I/O code would be generated. This has the advantage of making
support for additional programming languages (such as the very popular Python) easier to add into
the suite of available tools.

We will establish a “special project” with the HDF group, and work in collaboration with the
HDF group on developing the organization of data and the software necessary to demonstrate the
use of HDF5 for the storage of HEP data, including both the demonstration and performance

4

<lcgdict>

<class name="raw::RawDigit " ClassVersion="13" >

<version ClassVersion="12" checksum="160151695"/>

<version ClassVersion="13" checksum="412021819"/>

</class>

<class name="std::vector<raw::RawDigit> " />

<class name="art::Wrapper< std::vector<raw::RawDigit> >"/>

<ioread

version="[-11]"

sourceClass="raw::RawDigit"

source="unsigned short fChannel"

targetClass="raw::RawDigit"

target="fChannel"

include="RawDigit.h">

<![CDATA[fChannel = onfile.fChannel;]]>

</ioread>

</lcgdict>

Figure 2: The selection file used by ROOT’s tools to control generation of I/O code related to the
RawDigit class.

measurement of the prototyped I/O facilities, and prototyping of a DDL. We will obtain feedback
from the LArSoft and art user community to guide this development.

The current HDF5 interfaces are implemented in C. This makes them usable from C++, which
is what we require. But the C interfaces are not the most convenient to use from C++: they do not
provide the efficiency, robustness, or ease of use possible with modern C++. If time and funding
allows, we would also pursue the development of a native modern C++ interface for use of the
HDF5 I/O facilities.

Three quarters are allocated for this work.

3.3 Distributed data model R&D

The I/O facilities for current and future machines will be concentrated in specialized I/O nodes,
and the compute nodes will have no direct access to significant persistent storage. There will be
many compute nodes for each I/O node; for example, Mira at ANL has 128 compute nodes for
every I/O node. Thus it is necessary to have an efficient means to transfer the data using the
high-performance interconnects between the compute and I/O nodes.

The second part of the project involves investigating state-of-the-art R&D efforts in exascale
and distributed computing, and the production of a proof-of-concept distributed data store suitable
for use with modern HEP event-processing frameworks.

Most modern event-processing frameworks (including both art and CMSSW, the two frameworks
primarily developed at Fermilab) have, as a central data abstraction, the Event . The fundamental
algorithmic building block of an event-processing program is the event-processing module, called in
art a producer ; a simulation or reconstruction program consists of a (possibly large) number of such
producers. The Event is, as far as the framework is concerned, the atomic unit of data passed to a
producer for processing. The Event provides access to the instances of the data products (described
in the previous section). Simulation and reconstruction algorithms written by experimenters do

5

not obtain access to data products by directly reading an input file. Instead, the Event provides
the interface through which access to data products is obtained. Data products may be “gotten
from” or “put into” the Event through a small handful of API functions it provides. Algorithms
encapsulated in modules do not call each other directly; instead, they work in collaboration by each
algorithm getting from the Event the inputs it requires, and putting into the Event the products it
generates.

In order to allow the construction of distributed event-processing programs without disrupting
the natural and successful model of simulation and reconstruction algorithms as modules that
interact with the Event , we need to provide an equivalent to the Event that provides access to
a distributed data store—one suitable for communicating event data between the processes of a
distributed program.

The first goal of this work will be to produce a prototype implementation of such a data store
that can efficiently communicate event-product data from where they would be generated, on
compute nodes, to where the final products of simulation or reconstruction would be written to
storage, on the I/O nodes, making efficient use of the high-performance communication facilities
available on the machine, using advanced features like Remote Direct Memory Access (RDMA).

In addition to the development of an event API suitable for a distributed environment, it is
necessary to have an efficient encoding of the data products that minimizes communication overhead.
For example, current data models make extensive use of pointers (bare memory locations), which
are not easily communicated between processes which do not share the same address space. The
I/O facilities we currently rely upon make heavy use of buffering, serialization, and compression to
reduce the size of the resulting files, and to obtain platform independence, but these techniques are
compute-intensive. On a homogeneous exascale machine, much of this is not needed, and precludes
low-latency communication.

Three quarters are allocated for this work.

3.4 Scaling Studies

Because our concentration is on communication and storage of the data, we do not need to port
real HEP simulation or reconstruction algorithms to the new platforms. Instead we will simulate
the workloads, using realistic distributions of processing times and data sizes.

We will develop the infrastructure necessary to perform the scaling studies using Fermilab HPC
resources. This includes verifying that the interaction between multiple processes on compute nodes
and the I/O system on the I/O nodes works correctly, as well as some efficiency tuning in small-scale
applications. It is critical to do this locally, because access to national supercomputing resources is
limited.

When we have a sufficiently completed prototype for large-scale performance studies to be
feasible, we will apply for startup awards as appropriate at NERSC, ANL, and ORNL. Each of
these has a program for providing small awards for new projects: (a) Startup allocations at
NERSC, (b) Director’s Discretionary Preflight or Startup Allocations of Time program at ALCF,
and (c) Director’s Discretion grants at OLCF.

We will then deploy the prototype software on the available machines. We first target familiar
x86 HPC platforms, so that we may more quickly begin performance and scaling studies. Primary
questions these studies will address include: (a) How does the efficiency of data transfer between
nodes vary with the number of nodes being used? (b) Can we predict the effective limit on the
number of cores that can be used effectively? (c) What is the appropriate mix of “computing” and
I/O tasks for efficient use of a given type of machine? (d) How many processing steps or algorithms
must be combined in one program for reasonable resource use? (e) What should be the structure

6

of the “file”? How should event data be aggregated for efficient access? A valuable result of this
testing will be the development of infrastructure that can be re-used to evaluate machines as they
become available.

A final part of this work is to iterate upon the architecture and design, in order to optimize the
prototype system. The most important figure of merit in this case is the throughput of the complete
system: for a given computational load (reflecting the number and complexity of the algorithms
being executed), this is the number of events per second can be processed by a given fraction of a
given exascale-class machine.

Three quarters are devoted to these tasks.

3.5 Report and future directions

In the final phase of the project, we will write up our results for publication. We will also develop a
plan describing how HEP event processing frameworks (especially the art and CMSSW frameworks,
developed mainly at Fermilab) can move forward to operate efficiently in the exascale era, based on
what we have learned in this project.

One quarter is allocated for this work.

3.6 Schedule and Milestones

Year 1 Year 2

HDF5 R&D

Distributed data model R&D

Scaling studies

Future directions

4 Dissemination of Results and Future Funding

We will pursue publication of our results in the fora that are important to the DOE supercomputing
community. Foremost is the annual ACM/IEEE Supercomputing conference, and especially the
workshops associated with it, for example DISC, the International Workshop on Data Intensive
Scalable Computing. In addition we will pursue journal publication in an appropriate IEEE or
ACM journal, such as ACM Transactions on Parallel Computing.

The DOE regularly opens calls for proposals for research into the use of extreme-scale computing
technologies in the support of DOE science. One of the goals of this project is to gain some visibility
in the DOE supercomputing community for this kind of work, thus increasing the likelihood of
success for our responses to future calls.

5 Research Facilities

Development work will be done on the SSI department’s development cluster, which consists of the
following machines, connected via a 40G InfiniBand network:

7

• Five 4x8-core AMD 6128 (2.2GHz), 64GiB 1333MHz DRAM
• One 4x8-core AMD 6136 (2.2GHz), 64GiB 1333MHz DRAM
• One 2x10-core Intel E5-2680 (2.8GHz), 64GiB 1866MHz DRAM

These servers will be used to develop and verify correct behavior of the prototype software.
Access to a Luster filesystem and a modest number of computer nodes managed and maintained

by the Fermilab HPC group for the LQCD and CC projects is available for initial performance
testing.

Large scale performance testing, and scalability testing, will be done on ALCF, ORLF, or
NERSC resources. We will apply for those resources in time for their use in the second year of this
project.

References

[1] The Legion programming system, online at http://legion.stanford.edu.

[2] The Charm++ home page, online at http://charm.cs.uiuc.edu/.

[3] The HDF Group. Hierarchical Data Format, version 5, 1997-2015. http://www.hdfgroup.org/
HDF5/.

[4] K. Bloom and O. Gutsche, Non-Traditional HPC Use Case: Energy Frontier Experiment,

[5] “HEP Forum for Computational Excellence (HEP-FCE)”, S Habib and R Roser;
http://science.energy.gov/~/media/hep/hepap/pdf/20150406/day2/hep_fce_HEPAP_

v5_Roser_Habib.pdf.

[6] DOE ASCAC Data Subcommitte, textitSynergistic Challenges in Data-Intensive
Science and Exascale Computing, tech. report, US Dept. of Energy, Mar. 2013;
http://science.energy.gov/~/media/ascr/ascac/pdf/reports/2013/ASCAC_Data_

Intensive_Computing_report_final.pdf.

[7] Aurora Fact Sheet, http://www.intel.com/newsroom/assets/Intel_Aurora_factsheet.

pdf.

[8] “Profile report of the reco-2D and reco-3D stages of the MicroBooNE reconstruc-
tion software”, K. Knoepfel, J. Kowalkowski and P. Russo, Fermilab CS-doc-5579-
v1, https://cd-docdb.fnal.gov:440/cgi-bin/RetrieveFile?docid=5579&filename=

MicroBooNE_profile_report.pdf&version=1.

[9] Advanced Scientific Computing Research (ASCR) “Storage Systems and Input/Output (SSIO)
for Extreme Scale Science”, DOE National Laboratory Announcement, LAB 15-1338, http://
science.energy.gov/~/media/grants/pdf/lab-announcements/2015/LAB_15-1338.pdf.

8

